波音游戏-波音娱乐城赌球打不开_澳门百家乐手机软件_全讯网5532555(中国)·官方网站

計(jì)算數(shù)學(xué)與控制系

博士后

SMBU

李玉萍

作者:    審核:    發(fā)布時(shí)間:2024-12-17    閱讀次數(shù):

李玉萍Yuping Li



Contact Information:

Postal address: Shenzhen MSU-BIT University, 1 International University Park Road, Longgang District, 518172 Shenzhen, Guangdong Province, P.R. China.

Office: Room 333, Main Building.

Email: 6420240112@smbu.edu.cn  liyuping_math@163.com



Educational Background

·2020.09 – 2024.06, Ph.D. in Mathematics, School of Science, Harbin Institute of Technology, Shenzhen, Supervisor: Prof. Hui Liang.

·2018.09 – 2020.06, M.S. in Computational Mathematics, School of Mathematics, Harbin Institute of Technology, Supervisor: Prof. Chiping Zhang.

·2014.09 – 2018.06, B.S. in Information and Computing Sciences, School of Science and Mathematics, Heilongjiang University.


Working Experience

·2024.09 – Present, Postdoctoral Fellowship, MSU-BIT-SMBU Joint Research Centre of Applied Mathematics, Shenzhen MSU-BIT University, Supervisor: Prof. Ye Zhang.

Research interests:

·Numerical methods for Volterra integral equations and integro-differential equations, Ill-posed inverse problems


Publications and Preprints:

[1].Yuping Li, Hui Liang, Huifang Yuan. Discontinuous Galerkin methods for the generalized auto-convolution Volterra integral equations. Advances in Applied Mathematics and Mechanics, 2024, accepted.

[2].Yuping Li, Hui Liang, Huifang Yuan. On the convergence of Galerkin methods for auto-convolution Volterra integro-differential equations. Numerical Algorithms, 2024, online.

DOI: https://doi.org/10.1007/s11075-024-01874-0

[3].Yuping Li, Hui Liang. Continuous piecewise polynomial collocation methods for generalized auto-convolution Volterra integral equations. Journal of Integral Equations and Applications, 2023. 35(1): 41-59. DOI:10.1216/jie.2023.35.41

[4].Yuping Li, Zhanwen Yang, Hui Liang. Analysis of collocation methods for a class of third-kind auto-convolution Volterra integral equations. Mathematics and Computers in Simulation, 2022, 199: 341-358. DOI: 10.1016/j.matcom.2022.03.026

[5].Yuping Li, Zhanwen Yang, Chiping Zhang. Theoretical and numerical analysis of third-kind auto-convolution Volterra integral equations. Computational & Applied Mathematics, 2019, 38(4) : 170, 1-17. DOI:10.1007/s40314-019-0954-x


關(guān)閉

地址:深圳市龍崗區(qū)大運(yùn)新城國(guó)際大學(xué)園路1號(hào)

電話:0755-28323024

郵箱:info@smbu.edu.cn

深圳北理莫斯科大學(xué)版權(quán)所有 - 粵ICP備16056390號(hào) - 粵公網(wǎng)安備44030702002529號(hào)

返回頂部
鲨鱼百家乐游戏平台| 大发888官网授权网| 网上百家乐赌法| 皇家赌场| 百家乐网上技巧| 百家乐官网真人投注网站| 粤港澳百家乐娱乐网| 百家乐官网赌博机有鬼吗| 爱婴百家乐的玩法技巧和规则| 百家乐官网的保单打法| KK百家乐娱乐城| 实战百家乐官网十大取胜原因百分百战胜百家乐官网不买币不吹牛只你能做到按我说的.百家乐官网基本规则 | 百家乐官网赌博机有鬼吗| 洛克百家乐的玩法技巧和规则 | 洛隆县| 百家乐怎么才能包赢| 百家乐官网赢钱打| ewin棋牌官网| 百家乐英皇娱乐场| 百家乐官网澳门技巧| bet365注册| 百家乐技巧技巧| 帝王百家乐的玩法技巧和规则 | 米脂县| 真人百家乐蓝盾赌场娱乐网规则 | 百家乐官网大小技巧| 大发888游戏平台 娱乐场下载| 88百家乐现金网| 南宁百家乐官网赌机| 康马县| 大发888吧| 百家乐高手怎么下注| 肯博百家乐官网的玩法技巧和规则 | 百家乐官网变牌器| 体育博彩网| 大发888在线娱乐城合作伙伴| k7百家乐最小投注| 百家乐官网平玩法这样| 百家乐官网机器昀程序| 海南太阳城大酒店| 同花顺百家乐的玩法技巧和规则|