波音游戏-波音娱乐城赌球打不开_澳门百家乐手机软件_全讯网5532555(中国)·官方网站

計算數學與控制系

高級講師

SMBU

作者:    審核:    發布時間:2023-09-12    閱讀次數:

Dr. Chaikovskii Dmitrii

Senior Lecturer

Contact Information:

Postal address: Shenzhen MSU-BIT University, 1 International University Park Road, Longgang District, 518172 Shenzhen, Guangdong Province, China.

Office: Room 333, Main Building.

Email: dmitriich@smbu.edu.cn


Education
PhD in
Applied Mathematics, East China Normal University, 2020.

MS in Mechanics and Mathematics, Lomonosov Moscow State University, 2014.

BS in Materials Science, International University Dubna, 2012.



Professional Appointments
Aug. 2023 – present, Senior Lecturer, Faculty of Computational Mathematics and Cybernetics, Shenzhen MSU-BIT University.
Sep. 2020 – Aug. 2023, Postdoc, Faculty of Computational Mathematics and Cybernetics, Shenzhen MSU-BIT University.


Fundings

Principal investigator:

?01/2024 -- 12/2025, National Natural Science Fund of China (Grant No. 12350410359), Principal Investigator, (外國學者研究基金項目, 400000 CNY).

?11/2013 -- 06/2014, Foundation for Assistance to Small Innovative Enterprises in Science and Technology (Moscow, RU), (Grant No.  726ГУ1/2013), Principal investigator.

Participant:

?01/2025--12/2026, National Natural Science Foundation of China (NSFC), 二階漸近正則化方法及其在液相 色譜反問題中的應用, (Grant No. W2421102), Participant, (面上項目, 200000 CNY).

?01/2022--12/2025, National Natural Science Foundation of China (NSFC), 液相色譜法反問題的數學建模與新正則化方法, (Grant No. 12171036), Participant, (面上項目, 510000 CNY).

? 08/2021--08/2025, Beijing Natural Science Foundation (Grant No. Z210001), Modern Regularization Methods of Inverse Problems and Their Applications, Participant, (重點項目, 2 million CNY)

? 01/2021--12/2022, Shenzhen Science and technology innovation Commission (Grant No. 20200827173701001), New algroithms of inverse problems and their applications, Participant, (穩定支持項目, 500000 CNY).

? 01/2019--12/2022, National Natural Science Foundation of China, (Grant No. 11871217), 右端不連續奇攝動系統的多尺度研究, Participant, (面上項目, 530000 CNY).



Publications (*Corresponding author)

[17] Pirutin S., Chaikovskii D*., Shank M., Chivarzin M., Jia S., Yusipovich A., Suvorov O., Zhao Y., Bezryadnov D., Rubin A. Investigation of Cell Damage Induced by Silver Nanoparticles in a Model Cell System. Pharmaceutics, Vol.?17, No.?4, 2025, p.?398. https://doi.org/10.3390/pharmaceutics17040398

[16] Liubavin A., Ni M., Zhang Y., Chaikovskii D*. Asymptotic Solution for Three?Dimensional Reaction–Diffusion–Advection Equation with Periodic Boundary Conditions. Differential Equations, Vol.?60, No.?9, Sep?2024, pp.?1134–1152. https://doi.org/10.1134/S0012266124090027

[15] Melnikov B., Chaikovskii D. On the Application of Heuristics of the TSP for the Task of Restoring the DNA Matrix. Frontiers in Artificial Intelligence and Applications, Vol.?385, 2024, pp.?36–44. http://dx.doi.org/10.3233/FAIA240134

[14] Melnikov B., Chaikovskii D. Pseudogeometric Version of the Traveling Salesman Problem, Its Application in Quantum Physics Models and Some Heuristic Algorithms for Its Solution. Springer Proceedings in Mathematics and Statistics, Vol.?446, 2024, pp.?391–401. http://dx.doi.org/10.1007/978-3-031-52965-8_32

[13] Bryukhanov I.A., Chaikovskii D. Role of Solid Solution Strengthening on Shock Wave Compression of [111] Copper Crystals. Journal of Applied Physics, Vol.?135, No.?22, 2024. https://doi.org/10.1063/5.0203961

[12] Melnikov B. and Chaikovskii D.*. Some General Heuristics in the Traveling Salesman Problem and the Problem of Reconstructing the DNA Chain Distance Matrix. In 2023 7th International Conference on Computer Science and Artificial Intelligence (CSAI 2023), December 08--10, 2023, Beijing, China. ACM, New York, NY, USA 8 Pages. https://doi.org/10.1145/3638584.3638607

[11] Melnikov B., Terentyeva.Yu., Chaikovskii.D.. On the application of heuristic algorithms for solving the pseudogeometric version of the traveling salesman problem for the design of communication networks.  Informatization and communication, 2023, № 4, 7-16. https://doi.org/10.34219/2078-8320-2023-14-4-7-16

[10] Lysak T., Zakharova I., Kalinovich A., and Chaikovskii D.. Self-similar light beams at the second harmonic generation in a PT-symmetry structure with strong Bragg coupling at both frequencies, Proc. SPIE 12775, Quantum and Nonlinear Optics X, 1277513 (26 November 2023). https://doi.org/10.1117/12.2686020

[9] Zakharova, I.G., Lysak, T.M., Kalinovich, A.A., Chaikovskii D.. Reflective Properties of Active Layered Media when Generating the Second Optical Harmonic. Bull. Russ. Acad. Sci. Phys. 87, 1791–1795 (2023). https://doi.org/10.1134/S1062873823704075

[8] Melnikov B, Terentyeva Y., Chaikovskii D.*. Pseudogeometric version of the traveling salesman problem: application in quantum physics models and a heuristic variant of point placement. Cybernetics and physics, Vol. 12, No. 3, 2023, 194-200. https://doi.org/10.35470/2226-4116-2023-12-3-194-200

[7] Chaikovskii D., Zhang Y.. Solving forward and inverse problems involving a nonlinear three-dimensional partial differential equation via asymptotic expansions. IMA Journal of Applied Mathematics, 2023, 88, 525-557. https://doi.org/10.1093/imamat/hxad021

[6] Chaikovskii D., Liubavin A., Zhang Y.. Asymptotic expansion regularization for inverse source problems in two-dimensional singularly perturbed nonlinear parabolic PDEs. CSIAM Transactions on Applied Mathematics, 2023, 4(4), 721-757. http://dx.doi.org/10.4208/csiam-am.SO-2022-0017

[5] Melnikov B., Zhang Y., Chaikovskii D.*. An algorithm for the inverse problem of matrix processing: DNA chains, their distance matrices and reconstructing. Journal of Biosciences and Medicines, 2023, 11, 310-320. https://doi.org/10.4236/jbm.2023.115023 

[4] Melnikov B., Zhang Y., Chaikovskii D.*. An inverse problem for matrix processing: an improved algorithm for restoring the distance matrix for DNA chains. Cybernetics and Physics, 2022, 11(4), 217–226. https://doi.org/10.35470/2226-4116-2022-11-4-217-226

[3] Chaikovskii D., Zhang Y. Convergence analysis for forward and inverse problems in singularly perturbed time-dependent reaction-advection-diffusion equations. Journal of Computational Physics, 2022, 470, 111609. https://doi.org/10.1016/j.jcp.2022.111609

[2] Chaikovskii D, Ming Kang Ni. Internal layers for a singularly perturbed differential equation with Robin boundary value conditions. Journal of East China Normal University (Natural Science), 2020(2): 23-34. https://doi.org/10.3969/j.issn.1000-5641.201911043

[1] Chaikovskii D, Ming Kang Ni. Internal layers for a singularly perturbed second-order quasilinear differential equation with discontinuous right-hand side with Neumann and Dirichlet boundary conditions. Austrian Journal of Technical and Natural Sciences, Vienna, 2017, 11-12: 25-31.


Teaching:

1)Introduction into specialty, seminars, faculty of CMC.

2)Algebra and geometry part 1, seminars, faculty of CMC.

3)Algebra and geometry part 2, seminars, faculty of CMC.

4)Mathematical analysis part 3, seminars, faculty of CMC.

關閉

地址:深圳市龍崗區大運新城國際大學園路1號

電話:0755-28323024

郵箱:info@smbu.edu.cn

深圳北理莫斯科大學版權所有 - 粵ICP備16056390號 - 粵公網安備44030702002529號

返回頂部
博彩赌场| 府谷县| 百家乐娱乐平台网| 土默特右旗| 网上百家乐官网真的假的| 挖掘百家乐赢钱秘籍| www.sbobet2.com| 乐天堂百家乐娱乐场| 澳门百家乐官网博彩网| 真人百家乐赌博| 优惠搏百家乐官网的玩法技巧和规则| 百家乐赌场公司| 运城百家乐官网的玩法技巧和规则 | 百家乐投注法| 大发888游戏平台46| 澳门百家乐官网765118118| 武山县| 威尼斯人娱乐备用6222| 百家乐官网免费赌博软件| 百家乐官网2号程序| 喜力百家乐的玩法技巧和规则| 利赢百家乐现金网| 大地娱乐城| 博天堂百家乐官网的玩法技巧和规则| bet365存款| 任你博百家乐娱乐城| 苏州市| 威尼斯人娱乐场首页| 百家乐百家乐视频| 南靖县| 大发888网页ban| 大发888 代充| 百家乐官网板路| 大发888 代充| 成人百家乐的玩法技巧和规则| 博彩百家乐官网心得| 豪门国际娱乐网| 百家乐手机投注平台| 百家乐官网网投开户| 百家乐桌面| 线上百家乐官网代理|